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Abstract. Lieb and Schupp have obtained a number of ground-state properties for frustrated Heisenberg
models. The basic tool used was certain version of “spin-reflection positivity” method. One group of these
results is related to singlet nature of ground state. It needs an assumption of reflection symmetry present
in the system. In this paper, it is shown that analogous results hold also for other symmetries (inversion
etc.). The second Lieb-Schupp result is matrix inequality, which imply inequalities between ground-state
energies of certain systems. In the paper, the Lieb-Schupp inequality is applied to relate ground-state
energies of various systems: spin chains, ladders and multidimensional lattices.

PACS. 75.10.Jm Quantized spin models – 75.50.Ee Antiferromagnetics – 05.50.+q Lattice theory and
statistics (Ising, Potts, etc.)

1 Introduction

Geometric frustration takes place, when no arrangement
of spins on the lattice is possible in such a way that all in-
teractions minimize their energy. The canonical example is
an antiferromagnetic Ising model on triangular lattice [1]
(see Fig. 1). Another systems where the geometric frustra-
tion is particularly strong, are antiferromagnetic systems
on kagomé, pyrochlore, or (in d = 3) fcc cubic lattices.

Frustrated systems are very interesting and hard to
analyse, both in classical version and especially in the
quantum case. The source of these difficulties traces back
to the large ground-state degeneracy in the classical ver-
sion. Such systems are very sensitive to perturbations.
A consequence is possibility of very complicated phase
diagram at finite temperatures. The canonical example
of such beahviour is an ANNNI model [3], where such
phenomena as the presence of infinite number of phases,
devil’s staircase etc. appear. Besides of numerous efforts
and important results, [2–4], (for reviews, see [5,6,8]), full
treatment of such systems is not worked out so far.

The situation for quantum frustrated antiferromagnets
is even less clear. It is generally suspected that the ground
state emerging as a linear combination of many classi-
cal configurations is a featureless, “spin liquid” state, i.e.
the state without long-range ordering, where correlation
functions fall off exponentially [9]. However, another sce-
nario are also possible: it is “order by disorder” – exotic
ordering(s) absent in a classical version of these models.
It is difficult to predict which type of scenario will take
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Fig. 1. Example of frustrated spin system.

place in given concrete system. (For a review, see for in-
stance [7].) To my best knowledge, no general definite con-
clusions have been obtained so far.

Most informations obtained comes from an analysis
using approximate methods, such as guessing of ground-
state wave functions, numerical diagonalization of small
systems, spin waves, semiclassical (i.e. large-S) approxi-
mations. However, it is difficult to estimate how reliable
are these approximations. For this reason, exact results are
very desirable. Unfortunately, they are very exceptional.

In such a situation, exact results obtained by Lieb and
Schupp [10,11] (summarized also in [12]) for fully frus-
trate systems are of first importance. They are interest-
ing both as themselves and moreover, they can serve as a
test of validity of approximate methods. Results obtained
in [10,11] can be divided into two groups. The first one
concern ground-state properties for such systems and it
can be summarized as follows: ground states are singlets;
zero-field magnetization is zero; susceptibility is bounded
by certain constant. One of assumptions of these theorems
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is reflection symmetry. It was apparent that this method
could work also for another kind of symmetry, not neces-
sarily reflection one. Such a generalization turned out to
be possible, and this is the first result of the paper.

The second collection of results [11] concern compari-
son of ground state energies for spin rings. It turned out
that similar results hold for more complicated systems
(multidimensional lattices). This is second result of the
paper.

The outlook of the paper is as follows. In Section 2, the
basic ingredients of Lieb and Schupp technique are pre-
sented. Some systems of physical interest, for which the
results of [10,11] can be applied, are listed. After that,
the Lieb-Schupp technique is adapted to systems exhibit-
ing symmetry other than reflection one (rotation or inver-
sion). In Section 3, Lieb and Schupp results concerning
comparison of ground-state energies for spin rings with
the use of certain matrix inequality are described. Then
it is discussed how this technique can be applied to other
systems – for instance ground-state energies of systems on
different lattices. Section 4 contains short summary and
conclusions. The Appendix contains proof of Lieb-Schupp
inequality, which is fundamental for Section 3.

2 Lieb-Schupp approach and generalizations
for spin systems with symmetries

2.1 Reflection-symmetric systems

2.1.1 Assumptions

We make the following assumptions concerning systems
under consideration.

1. We consider Heisenberg models for arbitrary spin.
(Below we consider mainly the s = 1/2 case, but gen-
eralization to other spin values is straightforward.)

2. The system is invariant with respect to the reflec-
tion with respect to the O axis (d − 1 plane for d-
dimensional system). The system consist of two parts
(“Left” and “Right” ones), which are interchanged un-
der reflection (see Fig. 2). The Hilbert space H of the
system is a tensor product of Hilbert spaces HL,HR of
the corresponding subsystems; HL and HR are isomor-
phic. The Hamiltonian is a sum of three parts: HL, HR

andHC ;HL acts only on the left part (i.e.HL = h⊗1),
whereas HR acts on the right one (i.e. HR = 1 ⊗ h).
HC is the Hamiltonian for “crossing bonds” (i.e. for
bonds which intersect the symmetry line). It has the
form:

HC =
∑

y∈L, y′∈R

jy,y′ ŝy · ŝy′ (1)

where jy,y′ is a diagonal matrix with non-negative di-
agonal elements. The object ŝy can be a single spin or
more generally, it can be a linear combination of them:
ŝy =

∑
α∈L ji;αsα, where ji;α are real coefficients. The

objects ŝy need not be all identical for all indices y.
Under reflection operation, HL is transformed to HR

and vice versa, whereas HC transforms into itself.
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Fig. 2. System exhibiting reflection symmetry.

3. HL andHR are (almost) arbitrary: the only limitations
are: both commute with the total spin operator, and

4. moreover, all operators: HL, HR and HC are real in
the S3 basis. More precisely, it means that their ma-
trices are real in the base built up from tensor products
of S3 eigenstates of every spin.

2.1.2 Ground state properties

Every state of the system can be expressed as a linear
combination:

ψ =
∑

α,β

cαβψ
L
α ⊗ (ψR

β )rot, (2)

where states ψL
α form a real orthonormal base of S3 eigen-

states for the left subsystem, whereas (ψR
β )rot are cor-

responding rotated states for the right subsystem. (The
rotation – meant as an operation in the spin space – acting
for the state: |s,m〉 produces the state (−1)s−m|s,−m〉.)

The eigenvalue problem: Hψ = Eψ can be written as
a matrix equation for c matrix:

hLc+ c(hR)T −
3∑

i=1

∑

y

t(i)y c(t(i)y )T = Ec, (3)

where (hL)αβ and (hR)αβ are real, symmetric matrices for
corresponding terms of the Hamiltonian, whereas t(i)y are
real matrices, defined for spin operator ŝy =

∑
α∈L ji;αsα

(in the yth “bond”) by: t(1,3)
y;αβ = 〈ψL

α |ŝ(1,3)
y |ψL

β 〉 and t(2)y;αβ =

i〈ψL
α |ŝ(2)y |ψL

β 〉. Notice the total “minus” sign before third
term in expression (3); it is so because replacement of ŝy

by ŝy′ produces sign change for components 1 and 3,
whereas the i factor in definition of t(2) produces minus
sign for component 2.
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The energy expectation value, expressed in term of
the c matrix, is

〈ψ|H |ψ〉 = Tr (cc†hL) + Tr (c†chR)

−
3∑

i=1

∑

y

Tr c†t(i)y c(t(i)y )†. (4)

Lieb and Schupp have established a number ground-state
properties for reflection-symmetric systems. There are:

1. The c matrix is hermitian, i.e. without loss of general-
ity we can express eigenstates of H by hermitian ma-
trix c = c†. (It is proved using the left-right symmetry
in expression (4) for energy.)

2. Let the cmatrix corresponds to the ground state; then,
also the |c| matrix corresponds to the ground state.
Here |c| =

√
c2; we take the unique positive square

root. (It is proved by writing down (4) in the diagonal
basis.)

3. Properties above imply that we can choose the base
for ground states as a collection of functions of the
form (2), where cαβ are positive semi-definite (p.s.d.)
coefficient matrices.

4. The overlap of the ground state with canonical spin-
zero state (given by unit matrix in a basis of S(3) eigen-
states in either subsystem) is non-zero.

5. This property implies that there exist ground state
with spin zero, and moreover, that coefficient matrix
for this state is positive semidefinite. It follows from
the inequality: Eb ≥ E0 (Eb is an energy of the system
in the magnetic field b), which in turn is proved using
the matrix inequality (8).

6. We have “ice rule” for frustrated units, i.e. for col-
lection of spins appearing in the expression ŝy · ŝy′

for every index y. More precisely, if we denote: ŝy =∑
α∈L jαsα, then the expectation of the third compo-

nent of sites in each crossing bond vanishes for any
ground state |ψ0〉:

〈ψ0|ŝy + ŝy′ |ψ0〉.
Let us note that it is a “local” property, valid for every
“bond” separately. It is rather obvious if we know that
the ground state is singlet. However it is fulfilled also
in all ground states, where we have no warranty that
all ground states are singlets.

Under additional assumptions, these results can be made
stronger. For instance, if the system has periodic bound-
ary condition in at least one direction, then – using the
“ice rule” property – one shows ([10,11]) that all ground
states are singlets. Moreover, the magnetic susceptibility
is bounded from above, both in the ground state and in
positive temperatures.

Remark. Lieb and Schupp in [10] and [11] have devel-
oped general method and (almost) haven’t given examples
of systems where their method could apply; the only exam-
ple discussed is the checkerboard pyrochlore lattice. Some
further examples of physical interest, where their results
are applicable, are:
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Fig. 3. Spin enumeration on square plaquette.

1. J1 − J2 2d Heisenberg model:

H = J1

∑

n.n.

si · sj + J2

∑

n.n.n.

si · sj (5)

(we consider antiferromagnetic case, i.e. J1, J2 > 0).
It was considered by numerous authors – see, for in-
stance, [13] and references therein. This model exhibits
very interesting behaviour: when the quotient J2/J1 is
varied, the ground state undergoes a transition from
ordered, antiferromagnetic state to the ‘glassy’, non-
magnetic, spin-liquid-like one. (Such a picture emerged
as a result of investigations with the use of approxi-
mate methods). Lieb and Schupp results apply for J2 ≤
1
2J1. This condition is rather easy corollary from re-
sults of [11] (in [10] less general result appear, namely,
J2 = 1

2J1). As this stronger result does not appear ex-
plicitly in [11], the short derivation will be given: The
Hamiltonian (5) can be written in “plaquette” form:

H =
∑

h�,

where

h� =
1
2
J1(s1 · s1′ + s2 · s2′ + s1 · s2 + s1′ · s2′)

+ J2(s1 · s2′ + s1′ · s2);

(see Fig. 3); this expression can be written as

h� = J2ŝ · ŝ′ +
(1

2
J1 − J2

)(
s1 · s1′ + s2 · s2′

)

+
1
2
J1(s1 · s2 + s1′ · s2′) (6)

where ŝ = s1+s2, ŝ′ = s1′ +s2′. Consider h� as “cross-
ing bond”. Then, the third term in (6) is irrelevant, as
it contains terms belonging to the left and right sub-
systems only. The second term is antiferromagnetic if
J2 ≤ J1/2. In such a case, first and second terms are
of desired form (1). Note that spins si and ŝ are of
different nature. Note also that all conclusions above
are still valid, if we consider the anisotropic version of
the Hamiltonian (5):

H = Jv

∑

v.n.n.

si ·sj +Jh

∑

h.n.n.

si ·sj +J2

∑

n.n.n.

si ·sj (7)

where v.n.n denotes vertical nearest neighbour and
h.n.n denotes horizontal nearest neighbours. For
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the Hamiltonian (7) Lieb-Schupp results hold for
J2 ≤ Jh/2, whereas Jv can be arbitrary (even
ferromagnetic).
Most of approximate methods of analysis of (5) assume
that its ground state is singlet. Lieb and Schupp’ re-
sults can be used to justify this assumption. Moreover,
it can serve also as a test of these methods by supply-
ing rigorous upper bounds for susceptibility.

2. Axial Next-Nearest-Neighbour Heisenberg (ANNNH)
model [5]. This is Heisenberg model with two cou-
pling constants; we have isotropic coupling J1 between
nearest neighbours, and moreover, there is coupling
J2 between second neighbours along one of the axes
(say, z axis). Such models have been used to describe
helical and incommensurate configurations, and Lif-
shitz points in magnets ([5] and references therein).
Lieb-Schupp results can be applied when both con-
stants are antiferromagnetic, or when J1 is antiferro-
magnetic and J2 is ferromagnetic (in this case, one
should take the reflection plane to be parallel to the
line formed by J2 couplings).

2.2 Generalization to other symmetries

In the course of proofs in the previous section, geometric
properties of systems exhibiting reflection symmetry were
not employed. Only assumption which was used was that
hL transforms into hR and vice versa; particular nature
of this transformation was not essential. It suggests that
more general symmetry operations than reflection are al-
lowed. It is the case; more precise formulation is as follows.

We make assumptions identical as 1., 3. and 4. in Sec-
tion 2.1.1; the assumption 2. is changed into the following
one.

2’. The system again can be divided by two identi-
cal parts “L” and “R”, each of them is described by the
Hamiltonians HL = h ⊗ 1 and HL = 1 ⊗ h, respectively.
HC is the Hamiltonian for “bonds” between spins in L
and R subsystems. It has the form:

HC =
∑

i∈L,i′∈R

γi,i′si · si′

where the symmetric γi,i′ matrix is positive definite. One
can view on this property as a demand that HC has to
be “globally antiferromagnetic”, i.e. some coupling con-
stants γi,i′ can be negative (ferromagnetic), however, the
whole matrix γ has to be positive definite. The whole sys-
tem is invariant with respect to the some symmetry opera-
tion T, such that T2 = 1 (1 is identity operator); T trans-
forms the “L” subsystem into “R” one and vice versa. The
following operations: reflection, C2 rotation (see Fig. 4), or
inversion can serve as examples of such operation. Under
action of T, HL transforms into HR, HR into HL and HC

into itself.
The system described above can be easily transformed

into form equivalent to the one considered in the previ-
ous subsection. Let us notice that HC is bilinear in si, si′ .
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Fig. 4. System exhibiting inversion symmetry.

Then, the form: HC =
∑

i∈L,i′∈R γi,i′si · si′ can be di-
agonalized by suitable linear transformation in the spin
variables on “L” and the same transformation on “R”.
After diagonalization, HC takes the form

HC =
∑

I∈L,I′∈R

JI,I′σI · σI′

where the matrix JI,I′ is diagonal and has only non-
negative elements. Then, we have system in the form
analogous as (1) and one can repeat all considerations
from previous subsection, obtaining analogous results.
One should only remember that the “ice rule” concern
spin variables after diagonalizing transformation, i.e. we
have

〈ψ0|σI + σI′ |ψ0〉 = 0.

3 Trace inequality and comparison
of ground-state energies for various systems

Lieb and Schupp have proved beautiful inequality for
traces of matrices. It is crucial in further considerations.

Theorem ([11,12]). Let M,N – square matrices of di-
mensionsm×m and n×n respectively, and c – rectangular
m× n matrix. Then the following inequality holds:

|Tr c†McN †| ≤ 1
2
(Tr cLMcLM

† + Tr cRNcRN †), (8)

where cR =
√
c†c, cL =

√
cc† are unique (positive) square

roots from positive definite matrices c†c and cc†.
For the convenience of reader, the proof is supplied in

Appendix A.
Now, let us consider the system without reflection sym-

metry, which however still consists of the “left” subsys-
tem L described by HL and the “right” subsystem R
described by HR. The Hilbert space H of the system is
a tensor product of Hilbert spaces HL,HR of the corre-
sponding subsystems; however, HL and HR don’t have
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to be isomorphic. The full system will be denoted by
L−R, and its Hamiltonian HL−R contains also the “cross-
ing bond” term HC , describing “interaction” of these
two parts: HL−R = HL + HR + HC . Every state of the
system can be written in the form (2). We change slightly
the notation and write an analogon of (2) as:

ψ =
∑

α,β′
cαβ′ψL

α ⊗ (ψR
β′)rot, (9)

to distinguish between indices referring to the L part (un-
primed) and R (primed ones). Remember that the c ma-
trix is now, in general, the rectangular one.

Consider first the situation, where HC corresponds to
only one bond coupling both subsystems:

HC = s · S,
where s belongs to L and S belongs to R. One can write
expression for the mean value of energy in the manner
analogous as equation (4):

EL−R = Tr cc†hL + Tr c†chR −
3∑

µ=1

Tr
[
c†t(µ)c(T (µ))†

]
,

(10)
where: hL, hR are matrices of corresponding Hamiltoni-
ans. t refers to the left subsystem, whereas T to the right
one; t, T matrices are given by: t(1,3)

αβ = 〈ψL
α |s(1,3)|ψL

β 〉,
t
(2)
αβ = i〈ψL

α |s(2)|ψL
β 〉, and similarly for T : T

(1,3)
α′β′ =

〈ψR
α′ |S(1,3)|ψR

β′〉, T (2)
α′β′ = i〈ψR

α′ |S(2)|ψR
β′〉.

Inequality (8) applied to the last term of (10) gives:

−
3∑

µ=1

Tr c†t(µ)c(T (µ))† ≥

− 1
2

3∑

µ=1

(
Tr cLt(µ)cL(t(µ))† + Tr cRT (µ)cR(T (µ))†

)
.

Then, we can write:

EL−R ≥ Tr cc†hL + Tr c†chR

− 1
2

3∑

µ=1

(
Tr cLt(µ)cL(t(µ))† + Tr cRT (µ)cR(T (µ))†

)

= Tr cLcLhL + Tr cRcRhR

− 1
2

3∑

µ=1

(
Tr cLt(µ)cL(t(µ))† + Tr cRT (µ)cR(T (µ))†

)

=
1
2

(
Tr cLc

†
LhL + Tr c†LcLhL −

3∑

µ=1

Tr c†Lt
(µ)cL(t(µ))†

)

(11)

+
1
2

(
Tr cRc

†
RhR + Tr c†RcRhR

−
3∑

µ=1

Tr c†RT
(µ)cR(T (µ))†

)
. (12)

L – R

L – L R – R

➞

➞

Fig. 5. Illustration of inequality (14) in the case of spin chains
for n = 2, m = 3.

How can we interpret two last expressions? They resemble
very much ground-state energies for the following systems:
the first one consists of two copies of L subsystem with “in-
teraction” Hamiltonian HC = s · s′,where s belongs to L,
whereas s′ to its twin copy (let’s denote it as the L−L sys-
tem). The second one consists of two copies of R subsys-
tem with HC = S ·S′ (it will be denoted as R−R system).
More precisely, they are energies of trial functions, built
up from matrices cL and cR, respectively. From variational
principle, they are not less than true ground-state ener-
gies, so we have the general inequality for ground-state
energies for three systems L−R,L− L,R− R:

2EL−R ≥ EL−L + ER−R. (13)

Considerations above concerned the situation, where “in-
teraction” part was the only “bond” s · S coupling both
subsystems. Generalization to multi-bond case is immedi-
ate. Let’s have general “interaction” Hamiltonian:

HC =
∑

i∈L

∑

j′∈R

Jij′si · Sj′ ,

where we assume that Jij′ are positive numbers. Then, the
inequality (13) is still true for systems L−L andR−R with
“interaction” Hamiltonians: HC =

∑
i∈L

(∑
j′∈R Jij′

)
si ·

s′i for the L−L system, and HC =
∑

j′∈R

(∑
i∈L Jij′

)
Sj′ ·

S′
j′ for R−R system.

Lieb and Schupp have applied inequality (13) to spin
rings, getting the following relation between ground-state
energies Ek for rings with k spins:

2En+m ≥ E2n + E2m.

However, it seems that it can be used in much more general
situations, if we consider the multi-bond case.

Examples.

1. For spin chains (Fig. 5), we have analogous inequality:

2En+m ≥ E2n + E2m. (14)

2. Rather obvious is generalization of this result for sys-
tems defined on subsets of Z

d for d > 1 (rectan-
gles, parallelepipeds etc.) (d = 2 case is illustrated
in Fig. 6); as a result, we again have inequality (14),
where m,n are lengths of systems in direction perpen-
dicular to reflection line (plane for d = 3).
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L R

L L R R

➞ ➞

Fig. 6. Illustration of inequality (14) for 2d lattices; m =
2, n = 3.

L R

L L R R

➞ ➞

Fig. 7. Division of the system defined on a rectangular subset
of square lattice into L and R subsets by “snaky” line. Single
lines denote coupling constants equal to J , double lines cor-
respond to 2J couplings, and triple ones – to 3J . The same
convention is used on two following pictures.

3. Consider system defined on a rectangular subset of
square lattice (see Fig. 7). Divide it into L and R part
in nonsymmetric manner (in this example, this divi-
sion is realized by the “snaky” line). Then, we obtain
the inequality (13) for systems as pictured in Figure 7.

4. Consider “zig-zag ladder” (see Fig. 8). Divide it
into parts L and R by the line going through the
middle of the ladder and parallel to it. Then, the
inequality (13) gives relation between ground-state
energies of the “zig-zag” ladder and ordinary one,
with suitable relation between coupling constants (see
Fig. 8).

L R

L L
R R

➞ ➞

Fig. 8. “Zig-zag” and ordinary ladders.

L R

L L
R R

➞ ➞

Fig. 9. “Pyrochlore” and ordinary ladders.

5. The same construction can be applied to the “py-
rochlore” ladder (see Fig. 9).

6. Ground-state energy relations for systems described
in Example 4 can be repeatedly used to obtain the
inequality between systems defined on triangular and
rectangular lattices. Namely, consider the system de-
fined on isotropic triangular lattice with coupling con-
stant J and with periodic boundary condition in
both (“horizontal” and “vertical”) directions. Assume,
moreover, that we have 2k sites in the horizontal di-
rection and M sites in the horizontal one (k,M are
arbitrary). Let us assume that the division of the
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system onto L and R parts is realized by “vertical”
plane in such a way that both parts contain equal
number of sites. Then, by subsequent use of inequality
(13), we obtain relation between ground state energies
of systems on triangular lattice Etr and on rectangular
one Erect:

Etr ≥ Erect

where system on rectangular lattice has coupling con-
stants equal J in the vertical direction and 2J in the
horizontal one.

7. Analogous construction can be applied to obtain the
ground-state energy inequality between systems de-
fined on lattices: isotropic pyrochlore one (Epyro) and
rectangular one (Erect):

Epyro ≥ Erect

where system on pyrochlore lattice has coupling con-
stants all equal to J , whereas system on rectangular
lattice has couplings J in the vertical direction and 3J
in the horizontal one.

4 Summary

In the course of paper, some extension and applications
of Lieb-Schupp approach have been given. The first re-
sult concerns relaxing of demand of reflection symmetry,
present in their papers. It turned out that also other kinds
of symmetry are allowed (inversion, C2 rotation). The sec-
ond result is an application of Lieb-Schupp inequality, re-
lating ground-state energies of various systems, to numer-
ous new (to my best knowledge) situations. The relation
between ground-state energies of models on triangular and
rectangular lattices can serve as an example.

In the paper [12] Schupp wrote: “There is no doubt
that the scheme can be further generalized”. I consider my
paper as a step in this direction, but of course possibilities
of the Lieb-Schupp scheme seem to be far from exhaustion.

Appendix A

Here we supply proof of the inequality (8). Consider first
the weaker form of this inequality, where all matrices are
square ones.

Theorem ([11,12]). For any square matrices c,M,N
it is true that

|Tr c†McN †| ≤ 1
2
(Tr cLMcLM

† + Tr cRNcRN †), (A.1)

where cR =
√
c†c, cL =

√
cc† are unique (positive) square

roots from positive definite matrices c†c and cc†.
Proof: Using polar decomposition theorem, we can

express the u matrix as: c = ucR, where the u matrix is
unitary. We have: (ucRu†)2 = uc†cu† = (ucR)(cRu†) =
(ucR)(ucR)† = cc† = c2L, then, because the (positive)

square root is unique, we have: ucRu† = cL. Analo-
gously, for arbitrary analytic function f defined on posi-
tive real numbers, we have: uf(cR)u† = f(cL). In partic-
ular, u

√
cR =

√
cLu, which implies: c =

√
cLu

√
cR. Now,

let: P = u†
√
cLM

√
cLu and Q :=

√
cRN

†√cR; then, we
have:

|Tr c†McN †| = |TrPQ| ≤ 1
2
(TrPP † + TrQQ†)

=
1
2
(Tr cLMcLM

† + Tr cRNcRN †), (A.2)

where we have used Schwarz inequality for matrices:

|TrPQ| = |
∑

i,j

PijQji| ≤ 1
2

∑

i,j

(|Pij |2 + |Qji|2)

=
1
2
(TrPP † + TrQQ†).

Now let us notice that the inequality (A.1) still remains
valid if matrices c,M,N are not of the same dimension:
If c is m×n matrix, then M is m×m matrix, N is n× n
matrix, u is partial isometry, whereas cL and cR are posi-
tive matrices of dimension m×m and n×n, respectively.
We can repeat all considerations as above and – as a con-
clusion – we obtain the inequality (8).
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